139 research outputs found

    Sestrins as a therapeutic bridge between ROS and autophagy in cancer

    Get PDF
    The regulation of Reactive Oxygen Species (ROS) levels and the contribution therein from networks regulating cell metabolism, such as autophagy and the mTOR-dependent nutrient-sensing pathway, constitute major targets for selective therapeutic intervention against several types of tumors, due to their extensive rewiring in cancer cells as compared to healthy cells. Here, we discuss the sestrin family of proteins-homeostatic transducers of oxidative stress, and drivers of antioxidant and metabolic adaptation-as emerging targets for pharmacological intervention. These adaptive regulators lie at the intersection of those two priority nodes of interest in antitumor intervention-ROS control and the regulation of cell metabolism and autophagy-therefore, they hold the potential not only for the development of completely novel compounds, but also for leveraging on synergistic strategies with current options for tumor therapy and classification/stadiation to achieve personalized medicine

    Mutant p53-Associated Molecular Mechanisms of ROS Regulation in Cancer Cells

    Get PDF
    The TP53 tumor suppressor gene is the most frequently altered gene in tumors and an increasing number of studies highlight that mutant p53 proteins can acquire oncogenic properties, referred to as gain-of-function (GOF). Reactive oxygen species (ROS) play critical roles as intracellular messengers, regulating numerous signaling pathways linked to metabolism and cell growth. Tumor cells frequently display higher ROS levels compared to healthy cells as a result of their increased metabolism as well as serving as an oncogenic agent because of its damaging and mutational properties. Several studies reported that in contrast with the wild type protein, mutant p53 isoforms fail to exert antioxidant activities and rather increase intracellular ROS, driving a pro-tumorigenic survival. These pro-oxidant oncogenic abilities of GOF mutant p53 include signaling and metabolic rewiring, as well as the modulation of critical ROS-related transcription factors and antioxidant systems, which lead ROS unbalance linked to tumor progression. The studies summarized here highlight that GOF mutant p53 isoforms might constitute major targets for selective therapeutic intervention against several types of tumors and that ROS enhancement driven by mutant p53 might represent an "Achilles heel" of cancer cells, suggesting pro-oxidant drugs as a therapeutic approach for cancer patients bearing the mutant TP53 gene

    To metabolomics and beyond: a technological portfolio to investigate cancer metabolism

    Get PDF
    Tumour cells have exquisite flexibility in reprogramming their metabolism in order to support tumour initiation, progression, metastasis and resistance to therapies. These reprogrammed activities include a complete rewiring of the bioenergetic, biosynthetic and redox status to sustain the increased energetic demand of the cells. Over the last decades, the cancer metabolism field has seen an explosion of new biochemical technologies giving more tools than ever before to navigate this complexity. Within a cell or a tissue, the metabolites constitute the direct signature of the molecular phenotype and thus their profiling has concrete clinical applications in oncology. Metabolomics and fluxomics, are key technological approaches that mainly revolutionized the field enabling researchers to have both a qualitative and mechanistic model of the biochemical activities in cancer. Furthermore, the upgrade from bulk to single-cell analysis technologies provided unprecedented opportunity to investigate cancer biology at cellular resolution allowing an in depth quantitative analysis of complex and heterogenous diseases. More recently, the advent of functional genomic screening allowed the identification of molecular pathways, cellular processes, biomarkers and novel therapeutic targets that in concert with other technologies allow patient stratification and identification of new treatment regimens. This review is intended to be a guide for researchers to cancer metabolism, highlighting current and emerging technologies, emphasizing advantages, disadvantages and applications with the potential of leading the development of innovative anti-cancer therapies

    The antioxidant mitochondrial protein UCP2 promotes cancer development connecting theWarburg effect and autophagy

    Get PDF
    Mitochondrial anion transporter proteins localized into the mitochondrial inner membrane. Currently, five UCP family members have been identified in mammals.Among them, UCP2 is widely distributedthroughout the organism, suggesting different and wide functions for this mitochondrial uncoupling protein. Basically, the antioxidant role of UCP2 is due to its capability to decrease the mitochondrial potential and to dissipate the proton gradient

    Hypoxia dictates metabolic rewiring of tumors: implications for chemoresistance

    Get PDF
    Hypoxia is a condition commonly observed in the core of solid tumors. The hypoxia-inducible factors (HIF) act as hypoxia sensors that orchestrate a coordinated response increasing the pro-survival and pro-invasive phenotype of cancer cells, and determine a broad metabolic rewiring. These events favor tumor progression and chemoresistance. The increase in glucose and amino acid uptake, glycolytic flux, and lactate production; the alterations in glutamine metabolism, tricarboxylic acid cycle, and oxidative phosphorylation; the high levels of mitochondrial reactive oxygen species; the modulation of both fatty acid synthesis and oxidation are hallmarks of the metabolic rewiring induced by hypoxia. This review discusses how metabolic-dependent factors (e.g., increased acidification of tumor microenvironment coupled with intracellular alkalinization, and reduced mitochondrial metabolism), and metabolic-independent factors (e.g., increased expression of drug efflux transporters, stemness maintenance, and epithelial-mesenchymal transition) cooperate in determining chemoresistance in hypoxia. Specific metabolic modifiers, however, can reverse the metabolic phenotype of hypoxic tumor areas that are more chemoresistant into the phenotype typical of chemosensitive cells. We propose these metabolic modifiers, able to reverse the hypoxia-induced metabolic rewiring, as potential chemosensitizer agents against hypoxic and refractory tumor cells

    Hypoxia, endoplasmic reticulum stress and chemoresistance: dangerous liaisons

    Get PDF
    Solid tumors often grow in a micro-environment characterized by <\u20092% O2 tension. This condition, together with the aberrant activation of specific oncogenic patwhays, increases the amount and activity of the hypoxia-inducible factor-1\u3b1 (HIF-1\u3b1), a transcription factor that controls up to 200 genes involved in neoangiogenesis, metabolic rewiring, invasion and drug resistance. Hypoxia also induces endoplasmic reticulum (ER) stress, a condition that triggers cell death, if cells are irreversibly damaged, or cell survival, if the stress is mild.Hypoxia and chronic ER stress both induce chemoresistance. In this review we discuss the multiple and interconnected circuitries that link hypoxic environment, chronic ER stress and chemoresistance. We suggest that hypoxia and ER stress train and select the cells more adapted to survive in unfavorable conditions, by activating pleiotropic mechanisms including apoptosis inhibition, metabolic rewiring, anti-oxidant defences, drugs efflux. This adaptative process unequivocally expands clones that acquire resistance to chemotherapy.We believe that pharmacological inhibitors of HIF-1\u3b1 and modulators of ER stress, although characterized by low specificty and anti-cancer efficacy when used as single agents, may be repurposed as chemosensitizers against hypoxic and chemorefractory tumors in the next future

    Gut microbiota modulates seizure susceptibility

    Get PDF
    A bulk of data suggest that the gut microbiota plays a role in a broad range of diseases, including those affecting the central nervous system. Recently, significant differences in the intestinal microbiota of patients with epilepsy, compared to healthy volunteers, have been reported in an observational study. However, an active role of the intestinal microbiota in the pathogenesis of epilepsy, through the so-called "gut-brain axis," has yet to be demonstrated. In this study, we evaluated the direct impact of microbiota transplanted from epileptic animals to healthy recipient animals, to clarify whether the microbiota from animals with epilepsy can affect the excitability of the recipients' brain by lowering seizure thresholds. Our results provide the first evidence that mice who received microbiota from epileptic animals are more prone to develop status epilepticus, compared to recipients of "healthy" microbiota, after a subclinical dose of pilocarpine, indicating a higher susceptibility to seizures. The lower thresholds for seizure activity found in this study support the hypothesis that the microbiota, through the gut-brain axis, is able to affect neuronal excitability in the brain

    From single gene analysis to single cell profiling: a new era for precision medicine

    Get PDF
    Molecular profiling of DNA and RNA has provided valuable new insights into the genetic basis of non-malignant and malignant disorders, as well as an increased understanding of basic mechanisms that regulate human disease. Recent technological advances have enabled the analyses of alterations in gene-based structure or function in a comprehensive, high-throughput fashion showing that each tumor type typically exhibits distinct constellations of genetic alterations targeting one or more key cellular pathways that regulate cell growth and proliferation, evasion of the immune system, and other aspects of cancer behavior. These advances have important implications for future research and clinical practice in areas as molecular diagnostics, the implementation of gene or pathway-directed targeted therapy, and the use of such information to drive drug discovery. The 1st international and 32nd Annual Conference of Italian Association of Cell Cultures (AICC) conference wanted to offer the opportunity to match technological solutions and clinical needs in the era of precision medicine

    ABCA1/ABCB1 Ratio Determines Chemo- and Immune-Sensitivity in Human Osteosarcoma

    Get PDF
    The ATP Binding Cassette transporter B1 (ABCB1) induces chemoresistance in osteosarcoma, because it effluxes doxorubicin, reducing the intracellular accumulation, toxicity, and immunogenic cell death induced by the drug. The ATP Binding Cassette transporter A1 (ABCA1) effluxes isopentenyl pyrophosphate (IPP), a strong activator of anti-tumor V\u3b39V\u3b42 T-cells. Recruiting this population may represent an alternative strategy to rescue doxorubicin efficacy in ABCB1-expressing osteosarcoma. In this work, we analyzed how ABCA1 and ABCB1 are regulated in osteosarcoma, and if increasing the ABCA1-dependent activation of V\u3b39V\u3b42 T-cells could be an effective strategy against ABCB1-expressing osteosarcoma. We used 2D-cultured doxorubicin-sensitive human U-2OS and Saos-2 cells, their doxorubicin-resistant sublines (U-2OS/DX580 and Saos-2/DX580), and 3D cultures of U-2OS and Saos-2 cells. DX580-sublines and 3D cultures had higher levels of ABCB1 and higher resistance to doxorubicin than parental cells. Surprisingly, they had reduced ABCA1 levels, IPP efflux, and V\u3b39V\u3b42 T-cell-induced killing. In these chemo-immune-resistant cells, the Ras/Akt/mTOR axis inhibits the ABCA1-transcription induced by Liver X Receptor \u3b1 (LXR\u3b1); Ras/ERK1/2/HIF-1\u3b1 axis up-regulates ABCB1. Targeting the farnesylation of Ras with self-assembling nanoparticles encapsulating zoledronic acid (NZ) simultaneously inhibited both axes. In humanized mice, NZ reduced the growth of chemo-immune-resistant osteosarcomas, increased intratumor necro-apoptosis, and ABCA1/ABCB1 ratio and V\u3b39V\u3b42 T-cell infiltration. We suggest that the ABCB1 high ABCA1 low phenotype is indicative of chemo-immune-resistance. We propose aminobisphosphonates as new chemo-immune-sensitizing tools against drug-resistant osteosarcomas
    • …
    corecore